Effects of high-frequency electromagnetic fields on human EEG: a brain mapping study.
نویسندگان
چکیده
Cell phones emitting pulsed high-frequency electromagnetic fields (EMF) may affect the human brain, but there are inconsistent results concerning their effects on electroencephalogram (EEG). We used a 16-channel telemetric electroencephalograph (ExpertTM), to record EEG changes during exposure of human skull to EMF emitted by a mobile phone. Spatial distribution of EMF was especially concentrated around the ipsilateral eye adjacent to the basal surface of the brain. Traditional EEG was full of noises during operation of a cellular phone. Using a telemetric electroencephalograph (ExpertTM) in awake subjects, all the noise was eliminated, and EEG showed interesting changes: after a period of 10-15 s there was no visible change, the spectrum median frequency increased in areas close to antenna; after 20-40 s, a slow-wave activity (2.5-6.0 Hz) appeared in the contralateral frontal and temporal areas. These slow waves lasting for about one second repeated every 15-20 s at the same recording electrodes. After turning off the mobile phone, slow-wave activity progressively disappeared; local changes such as increased median frequency decreased and disappeared after 15-20 min. We observed similar changes in children, but the slow-waves with higher amplitude appeared earlier in children (10-20 s) than adults, and their frequency was lower (1.0-2.5 Hz) with longer duration and shorter intervals. The results suggested that cellular phones may reversibly influence the human brain, inducing abnormal slow waves in EEG of awake persons.
منابع مشابه
Investigating The Effects of Modem Electromagnetic Waves (2.4 GHz) on Electroencephalogram
With respect to the dramatic increasing use of electronically communicators and wireless modems, concerns have been raised about the possible effects of emitted electromagnetic radiation on human brain. In this paper, the effects of high-frequency wireless modem waves on the brain signal are investigated. To this end, the Electroencephalograph (EEG) recording of 15 volunteers is examined in fou...
متن کاملشبیهسازی تشعشعات موبایل در مجاورت سر بزرگسال و کودک
Introduction: The exposure of human brain to electromagnetic waves can show adverse effects on brain functions. Electromagnetic waves effects on adult and child head have been investigated and compared In the present study. Methods and Materials: A simple spherical model consisted of six layers is considered to simulate the behavior of human brain. HFSS (High Frequency Structure Simulator) ha...
متن کاملEffects of static and electromagnetic fields on human serum paraoxonase-1 activity in vitro
Introduction: In recent years the relationship between electromagnetic fields and coronary artery disease is attracted a considerable attention. Low density lipoprotein (LDL) oxidation is the initial step in the development of atherosclerosis. Paraoxonase1 (PON1) protects LDL and High density lipoprotein (HDL) against oxidative processes, thus preventing the formation of atherogenic (oxidized-L...
متن کاملScrutiny of brain signals variations in regions Cz, C3 and C4 under Local Exposure of Extremely Low Frequency and Weak pulsed Magnetic Field to promote Neurofeedback systems
Introduction: Researchers have long been interested in the effects of low intensity (less than 500 microtesla) and Extremely Low Frequency Magnetic Fields (ELF-MF, less than 300 Hz) on human’s brain activity. In this study, our purpose was to analyze the effect of local magnetic field pulses around brain regions Cz, C3, C4 on human electroencephalogram (EEG) and induction of resonance effect...
متن کاملStudy of the frequency parameters of EEG influenced by zone-dependent local ELF-MF exposure on the human head.
It has been reported that human subjects exposed to electromagnetic fields exhibit changes in human EEG signals at the frequency of stimulation. The aim of the present study was to expose different parts of the brain to extremely low-frequency magnetic fields locally and investigate EEG power spectrum alters at the frequency of stimulation. EEG relative power spectrum were evaluated at 3, 5, 10...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The International journal of neuroscience
دوره 113 7 شماره
صفحات -
تاریخ انتشار 2003